cap_machine.rules.rules_Lea

From iris.base_logic Require Export invariants gen_heap.
From iris.program_logic Require Export weakestpre ectx_lifting.
From iris.proofmode Require Import proofmode.
From iris.algebra Require Import frac.
From cap_machine Require Export rules_base.

Section cap_lang_rules.
  Context `{HM: memG Σ, HR: regG Σ}.
  Context `{MachineParameters}.
  Implicit Types P Q : iProp Σ.
  Implicit Types σ : ExecConf.
  Implicit Types c : cap_lang.expr.
  Implicit Types r : RegName.
  Implicit Types v : cap_lang.val.
  Implicit Types w : Word.
  Implicit Types reg : gmap RegName Word.
  Implicit Types ms : gmap Addr Word.

  Inductive Lea_failure (regs: Reg) (r1: RegName) (rv: Z + RegName) :=
  | Lea_fail_rv_nonconst :
     z_of_argument regs rv = None ->
     Lea_failure regs r1 rv
  | Lea_fail_allowed : forall w,
     regs !! r1 = Some w ->
     is_mutable_range w = false
     Lea_failure regs r1 rv
  | Lea_fail_overflow_cap : forall p b e a z,
     regs !! r1 = Some (WCap p b e a) ->
     z_of_argument regs rv = Some z ->
     (a + z)%a = None ->
     Lea_failure regs r1 rv
  | Lea_fail_overflow_PC_cap : forall p b e a z a',
     regs !! r1 = Some (WCap p b e a) ->
     z_of_argument regs rv = Some z ->
     (a + z)%a = Some a' ->
     incrementPC (<[ r1 := WCap p b e a' ]> regs) = None ->
     Lea_failure regs r1 rv
  | Lea_fail_overflow_sr : forall p b e a z,
     regs !! r1 = Some (WSealRange p b e a) ->
     z_of_argument regs rv = Some z ->
     (a + z)%ot = None ->
     Lea_failure regs r1 rv
  | Lea_fail_overflow_PC_sr : forall p b e a z a',
     regs !! r1 = Some (WSealRange p b e a) ->
     z_of_argument regs rv = Some z ->
     (a + z)%ot = Some a' ->
     incrementPC (<[ r1 := WSealRange p b e a' ]> regs) = None ->
     Lea_failure regs r1 rv
  .

  Inductive Lea_spec
    (regs: Reg) (r1: RegName) (rv: Z + RegName)
    (regs': Reg) : cap_lang.val Prop
  :=
  | Lea_spec_success_cap: forall p b e a z a',
    regs !! r1 = Some (WCap p b e a) ->
    p E ->
    z_of_argument regs rv = Some z ->
    (a + z)%a = Some a' ->
    incrementPC
      (<[ r1 := WCap p b e a' ]> regs) = Some regs' ->
    Lea_spec regs r1 rv regs' NextIV
  | Lea_spec_success_sr: forall p b e a z a',
    regs !! r1 = Some (WSealRange p b e a) ->
    z_of_argument regs rv = Some z ->
    (a + z)%ot = Some a' ->
    incrementPC
      (<[ r1 := WSealRange p b e a' ]> regs) = Some regs' ->
    Lea_spec regs r1 rv regs' NextIV
  | Lea_spec_failure :
    Lea_failure regs r1 rv ->
    Lea_spec regs r1 rv regs' FailedV.

   Lemma wp_lea Ep pc_p pc_b pc_e pc_a r1 w arg (regs: Reg) :
     decodeInstrW w = Lea r1 arg
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     regs !! PC = Some (WCap pc_p pc_b pc_e pc_a)
     regs_of (Lea r1 arg) dom regs
     {{{ pc_a ↦ₐ w
          [∗ map] ky regs, k ↦ᵣ y }}}
       Instr Executable @ Ep
     {{{ regs' retv, RET retv;
          Lea_spec regs r1 arg regs' retv
         pc_a ↦ₐ w
         [∗ map] ky regs', k ↦ᵣ y }}}.
   Proof.
     iIntros (Hinstr Hvpc HPC Dregs φ) "(>Hpc_a & >Hmap) Hφ".
     iApply wp_lift_atomic_base_step_no_fork; auto.
     iIntros (σ1 ns l1 l2 nt) "Hσ1 /=". destruct σ1; simpl.
     iDestruct "Hσ1" as "[Hr Hm]".
     iDestruct (gen_heap_valid_inclSepM with "Hr Hmap") as %Hregs.
     pose proof (lookup_weaken _ _ _ _ HPC Hregs).
     iDestruct (@gen_heap_valid with "Hm Hpc_a") as %Hpc_a; auto.
     iModIntro. iSplitR. by iPureIntro; apply normal_always_base_reducible.
     iNext. iIntros (e2 σ2 efs Hpstep).
     apply prim_step_exec_inv in Hpstep as (-> & -> & (c & -> & Hstep)).
     iIntros "_".
     iSplitR; auto. eapply step_exec_inv in Hstep; eauto.
     unfold exec in Hstep; simpl in Hstep.

     specialize (indom_regs_incl _ _ _ Dregs Hregs) as Hri. unfold regs_of in Hri.

     odestruct (Hri r1) as [r1v [Hr'1 Hr1]]. by set_solver+.
     rewrite Hr1 /= in Hstep.

     destruct (z_of_argument regs arg) as [ argz |] eqn:Harg;
       pose proof Harg as Harg'; cycle 1.
     { (* Failure: argument is not a constant (z_of_argument regs arg = None) *)
       unfold z_of_argument in Harg, Hstep. destruct arg as [| r0]; [ congruence |].
       odestruct (Hri r0) as [r0v [Hr'0 Hr0]].
       { unfold regs_of_argument. set_solver+. }
       rewrite Hr0 Hr'0 in Harg Hstep.
       assert (c = Failed σ2 = (r, m)) as (-> & ->).
       { destruct_word r0v; cbn in Hstep; try congruence; by simplify_pair_eq. }
       iFailWP "Hφ" Lea_fail_rv_nonconst. }
     apply (z_of_arg_mono _ r) in Harg; auto. rewrite Harg in Hstep; cbn in Hstep.

     destruct (is_mutable_range r1v) eqn:Hr1v.
     2: { (* Failure: r1v is not of the right type *)
       unfold is_mutable_range in Hr1v.
       assert (c = Failed σ2 = (r, m)) as (-> & ->).
       { destruct r1v as [ | [p b e a | ] | ]; try by inversion Hr1v.
         all: try by simplify_pair_eq.
         destruct p; try congruence.
         simplify_pair_eq; auto. }
       iFailWP "Hφ" Lea_fail_allowed. }

     (* Now the proof splits depending on the type of value in r1v *)
     destruct r1v as [ | [p b e a | p b e a] | ].
     1,4: inversion Hr1v.

     (* First, the case where r1v is a capability *)
     + destruct (perm_eq_dec p E); [ subst p |].
       { rewrite /is_mutable_range in Hr1v; congruence. }

       destruct (a + argz)%a as [ a' |] eqn:Hoffset; cycle 1.
       { (* Failure: offset is too large *)
         assert (c = Failed σ2 = (r, m)) as (-> & ->)
             by (destruct p; inversion Hstep; auto).
         iFailWP "Hφ" Lea_fail_overflow_cap. }

       rewrite /update_reg /= in Hstep.
       destruct (incrementPC (<[ r1 := WCap p b e a' ]> regs)) as [ regs' |] eqn:Hregs';
         pose proof Hregs' as Hregs'2; cycle 1.
       { (* Failure: incrementing PC overflows *)
         assert (incrementPC (<[ r1 := WCap p b e a' ]> r) = None) as HH.
         { eapply incrementPC_overflow_mono; first eapply Hregs'.
             by rewrite lookup_insert_is_Some'; eauto.
               by apply insert_mono; eauto. }
         apply (incrementPC_fail_updatePC _ m) in HH. rewrite HH in Hstep.
         assert (c = Failed σ2 = (r, m)) as (-> & ->)
             by (destruct p; inversion Hstep; auto).
         iFailWP "Hφ" Lea_fail_overflow_PC_cap. }

       (* Success *)
       eapply (incrementPC_success_updatePC _ m) in Hregs'
         as (p' & g' & b' & e' & a'' & a_pc' & HPC'' & HuPC & ->).
       eapply updatePC_success_incl in HuPC. 2: by eapply insert_mono; eauto.
       rewrite HuPC in Hstep; clear HuPC.
       eassert ((c, σ2) = (NextI, _)) as HH.
       { destruct p; cbn in Hstep; eauto. congruence. }
       simplify_pair_eq.

       iFrame.
       iMod ((gen_heap_update_inSepM _ _ r1) with "Hr Hmap") as "[Hr Hmap]"; eauto.
       iMod ((gen_heap_update_inSepM _ _ PC) with "Hr Hmap") as "[Hr Hmap]"; eauto.
       iFrame. iModIntro. iApply "Hφ". iFrame. iPureIntro.
       eapply Lea_spec_success_cap; eauto.
    (* Now, the case where r1v is a sealrange *)
     + destruct (a + argz)%ot as [ a' |] eqn:Hoffset; cycle 1.
       { (* Failure: offset is too large *)
         assert (c = Failed σ2 = (r, m)) as (-> & ->)
             by (destruct p; inversion Hstep; auto).
         iFailWP "Hφ" Lea_fail_overflow_sr. }

       rewrite /update_reg /= in Hstep.
       destruct (incrementPC (<[ r1 := WSealRange p b e a' ]> regs)) as [ regs' |] eqn:Hregs';
         pose proof Hregs' as Hregs'2; cycle 1.
       { (* Failure: incrementing PC overflows *)
         assert (incrementPC (<[ r1 := WSealRange p b e a' ]> r) = None) as HH.
         { eapply incrementPC_overflow_mono; first eapply Hregs'.
             by rewrite lookup_insert_is_Some'; eauto.
               by apply insert_mono; eauto. }
         apply (incrementPC_fail_updatePC _ m) in HH. rewrite HH in Hstep.
         assert (c = Failed σ2 = (r, m)) as (-> & ->)
             by (destruct p; inversion Hstep; auto).
         iFailWP "Hφ" Lea_fail_overflow_PC_sr. }

       (* Success *)
       eapply (incrementPC_success_updatePC _ m) in Hregs'
         as (p' & g' & b' & e' & a'' & a_pc' & HPC'' & HuPC & ->).
       eapply updatePC_success_incl in HuPC. 2: by eapply insert_mono; eauto.
       rewrite HuPC in Hstep; clear HuPC.
       eassert ((c, σ2) = (NextI, _)) as HH.
       { destruct p; cbn in Hstep; eauto. }
       simplify_pair_eq.

       iFrame.
       iMod ((gen_heap_update_inSepM _ _ r1) with "Hr Hmap") as "[Hr Hmap]"; eauto.
       iMod ((gen_heap_update_inSepM _ _ PC) with "Hr Hmap") as "[Hr Hmap]"; eauto.
       iFrame. iModIntro. iApply "Hφ". iFrame. iPureIntro.
       eapply Lea_spec_success_sr; eauto.
   Unshelve. all: auto.
   Unshelve. Fail idtac. Admitted.

   Lemma wp_lea_success_reg_PC Ep pc_p pc_b pc_e pc_a pc_a' w rv z a' :
     decodeInstrW w = Lea PC (inr rv)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (a' + 1)%a = Some pc_a'
     (pc_a + z)%a = Some a'
     pc_p E

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            rv ↦ᵣ WInt z }}}
       Instr Executable @ Ep
       {{{ RET NextIV;
           PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
               pc_a ↦ₐ w
               rv ↦ᵣ WInt z }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' Hnep φ) "(>HPC & >Hpc_a & >Hrv) Hφ".
     iDestruct (map_of_regs_2 with "HPC Hrv") as "[Hmap %]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       rewrite !insert_insert. (* TODO: add to simplify_map_eq via simpl_map? *)
       iApply (regs_of_map_2 with "Hmap"); eauto. }
     { (* Success with WSealRange (contradiction) *)
       simplify_map_eq. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       destruct pc_p; congruence.
       congruence.
     }
    Unshelve. all: auto.
   Unshelve. Fail idtac. Admitted.

   Lemma wp_lea_success_reg Ep pc_p pc_b pc_e pc_a pc_a' w r1 rv p b e a z a' :
     decodeInstrW w = Lea r1 (inr rv)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (pc_a + 1)%a = Some pc_a'
     (a + z)%a = Some a'
     p E

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            r1 ↦ᵣ WCap p b e a
            rv ↦ᵣ WInt z }}}
       Instr Executable @ Ep
       {{{ RET NextIV;
           PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
               pc_a ↦ₐ w
               rv ↦ᵣ WInt z
               r1 ↦ᵣ WCap p b e a' }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1 & >Hrv) Hφ".
     iDestruct (map_of_regs_3 with "HPC Hrv Hr1") as "[Hmap (%&%&%)]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       (* FIXME: tedious *)
       rewrite (insert_commute _ PC r1) // insert_insert.
       rewrite (insert_commute _ r1 PC) // (insert_commute _ r1 rv) // insert_insert.
       iApply (regs_of_map_3 with "Hmap"); eauto. }
     { (* Success with WSealRange (contradiction) *)
       simplify_map_eq. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       destruct p; congruence.
       congruence.
     }
    Unshelve. all: auto.
   Unshelve. Fail idtac. Admitted.

   Lemma wp_lea_success_z_PC Ep pc_p pc_b pc_e pc_a pc_a' w z a' :
     decodeInstrW w = Lea PC (inl z)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (a' + 1)%a = Some pc_a'
     (pc_a + z)%a = Some a'
     pc_p E

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w }}}
       Instr Executable @ Ep
     {{{ RET NextIV;
         PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
             pc_a ↦ₐ w }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a) Hφ".
     iDestruct (map_of_regs_1 with "HPC") as "Hmap".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       rewrite !insert_insert. iApply (regs_of_map_1 with "Hmap"); eauto. }
     { (* Success with WSealRange (contradiction) *)
       simplify_map_eq. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       destruct pc_p; congruence.
       congruence.
     }
     Unshelve. all: auto.
   Unshelve. Fail idtac. Admitted.

   Lemma wp_lea_success_z Ep pc_p pc_b pc_e pc_a pc_a' w r1 p b e a z a' :
     decodeInstrW w = Lea r1 (inl z)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (pc_a + 1)%a = Some pc_a'
     (a + z)%a = Some a'
     p E

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            r1 ↦ᵣ WCap p b e a }}}
       Instr Executable @ Ep
     {{{ RET NextIV;
         PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
             pc_a ↦ₐ w
             r1 ↦ᵣ WCap p b e a' }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1) Hφ".
     iDestruct (map_of_regs_2 with "HPC Hr1") as "[Hmap %]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       (* FIXME: tedious *)
       rewrite insert_commute // insert_insert insert_commute // insert_insert.
       iDestruct (regs_of_map_2 with "Hmap") as "[? ?]"; eauto. iFrame. }
     { (* Success with WSealRange (contradiction) *)
       simplify_map_eq. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       destruct p; congruence.
       congruence.
     }
     Unshelve. all:auto.
   Unshelve. Fail idtac. Admitted.

   (* Similar rules in case we have a SealRange instead of a capability, where some cases are impossible, because a SealRange is not a valid PC *)

   Lemma wp_lea_success_reg_sr Ep pc_p pc_b pc_e pc_a pc_a' w r1 rv p b e a z a' :
     decodeInstrW w = Lea r1 (inr rv)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (pc_a + 1)%a = Some pc_a'
     (a + z)%ot = Some a'

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            r1 ↦ᵣ WSealRange p b e a
            rv ↦ᵣ WInt z }}}
       Instr Executable @ Ep
       {{{ RET NextIV;
           PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
               pc_a ↦ₐ w
               rv ↦ᵣ WInt z
               r1 ↦ᵣ WSealRange p b e a' }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' ϕ) "(>HPC & >Hpc_a & >Hr1 & >Hrv) Hφ".
     iDestruct (map_of_regs_3 with "HPC Hrv Hr1") as "[Hmap (%&%&%)]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success with WSealCap (contradiction) *)
       simplify_map_eq. }
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       (* FIXME: tedious *)
       rewrite (insert_commute _ PC r1) // insert_insert.
       rewrite (insert_commute _ r1 PC) // (insert_commute _ r1 rv) // insert_insert.
       iApply (regs_of_map_3 with "Hmap"); eauto. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       congruence.
     }
    Unshelve. all: auto.
   Unshelve. Fail idtac. Admitted.

  Lemma wp_lea_success_z_sr Ep pc_p pc_b pc_e pc_a pc_a' w r1 p b e a z a' :
     decodeInstrW w = Lea r1 (inl z)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (pc_a + 1)%a = Some pc_a'
     (a + z)%ot = Some a'

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            r1 ↦ᵣ WSealRange p b e a }}}
       Instr Executable @ Ep
     {{{ RET NextIV;
         PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
             pc_a ↦ₐ w
             r1 ↦ᵣ WSealRange p b e a' }}}.
   Proof.
     iIntros (Hinstr Hvpc Hpca' Ha' ϕ) "(>HPC & >Hpc_a & >Hr1) Hφ".
     iDestruct (map_of_regs_2 with "HPC Hr1") as "[Hmap %]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.

     destruct Hspec as [ | | * Hfail ].
     { (* Success with WSealRange (contradiction) *)
       simplify_map_eq. }
     { (* Success *)
       iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
       (* FIXME: tedious *)
       rewrite insert_commute // insert_insert insert_commute // insert_insert.
       iDestruct (regs_of_map_2 with "Hmap") as "[? ?]"; eauto. iFrame. }
     { (* Failure (contradiction) *)
       destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto.
       congruence.
     }
     Unshelve. all:auto.
   Unshelve. Fail idtac. Admitted.

   Lemma wp_Lea_fail_none Ep pc_p pc_b pc_e pc_a w r1 rv p b e a z :
     decodeInstrW w = Lea r1 (inr rv)
     isCorrectPC (WCap pc_p pc_b pc_e pc_a)
     (a + z)%a = None ->

     {{{ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
            pc_a ↦ₐ w
            r1 ↦ᵣ WCap p b e a
            rv ↦ᵣ WInt z }}}
       Instr Executable @ Ep
       {{{ RET FailedV; True }}}.
   Proof.
     iIntros (Hdecode Hvpc Hz φ) "(>HPC & >Hpc_a & >Hsrc & >Hdst) Hφ".
     iDestruct (map_of_regs_3 with "HPC Hsrc Hdst") as "[Hmap (%&%&%)]".
     iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
     by rewrite !dom_insert; set_solver+.
     iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
     iDestruct "Hspec" as %Hspec.
     destruct Hspec as [* Hsucc | * Hsucc |].
     { (* Success (contradiction) *) simplify_map_eq. }
     { (* Success (contradiction) *) simplify_map_eq. }
     { (* Failure, done *) by iApply "Hφ". }
   Unshelve. Fail idtac. Admitted.

End cap_lang_rules.