cap_machine.ftlr.Lea
From cap_machine Require Export logrel.
From iris.proofmode Require Import proofmode.
From iris.program_logic Require Import weakestpre adequacy lifting.
From stdpp Require Import base.
From cap_machine.ftlr Require Import ftlr_base interp_weakening.
From cap_machine.rules Require Import rules_base rules_Lea.
Section fundamental.
Context {Σ:gFunctors} {memg:memG Σ} {regg:regG Σ} {sealsg: sealStoreG Σ}
{nainv: logrel_na_invs Σ}
`{MachineParameters}.
Notation D := ((leibnizO Word) -n> iPropO Σ).
Notation R := ((leibnizO Reg) -n> iPropO Σ).
Implicit Types w : (leibnizO Word).
Implicit Types interp : (D).
Lemma lea_case (r : leibnizO Reg) (p : Perm)
(b e a : Addr) (w : Word) (dst : RegName) (r0 : Z + RegName) (P:D):
ftlr_instr r p b e a w (Lea dst r0) P.
Proof.
intros Hp Hsome i Hbae Hi.
iIntros "#IH #Hinv #Hinva #Hreg #[Hread Hwrite] Hown Ha HP Hcls HPC Hmap".
rewrite delete_insert_delete.
iDestruct ((big_sepM_delete _ _ PC) with "[HPC Hmap]") as "Hmap /=";
[apply lookup_insert|rewrite delete_insert_delete;iFrame|]. simpl.
iApply (wp_lea with "[$Ha $Hmap]"); eauto.
{ by rewrite lookup_insert. }
{ rewrite /subseteq /map_subseteq /set_subseteq_instance. intros rr _.
apply elem_of_dom. apply lookup_insert_is_Some'; eauto. }
iIntros "!>" (regs' retv). iDestruct 1 as (HSpec) "[Ha Hmap]".
destruct HSpec as [ * Hdst ? Hz Hoffset HincrPC | * Hdst Hz Hoffset HincrPC | ].
{ apply incrementPC_Some_inv in HincrPC as (p''&b''&e''&a''& ? & HPC & Z & Hregs').
assert (p'' = p ∧ b'' = b ∧ e'' = e) as (-> & -> & ->).
{ destruct (decide (PC = dst)); simplify_map_eq; auto. }
iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext.
iIntros "_".
iApply ("IH" $! regs' with "[%] [] [Hmap] [$Hown]").
{ cbn. intros. subst regs'. by repeat (apply lookup_insert_is_Some'; right). }
{ iIntros (ri v Hri Hvs).
subst regs'.
rewrite lookup_insert_ne in Hvs; auto.
destruct (decide (ri = dst)).
{ subst ri.
rewrite lookup_insert_ne in Hdst; auto.
rewrite lookup_insert in Hvs; inversion Hvs. simplify_eq.
unshelve iSpecialize ("Hreg" $! dst _ _ Hdst); eauto.
iApply interp_weakening; eauto; try solve_addr.
destruct p0; simpl; auto. }
{ repeat (rewrite lookup_insert_ne in Hvs); auto.
iApply "Hreg"; auto. } }
{ subst regs'. rewrite insert_insert. iApply "Hmap". }
iModIntro.
iApply (interp_weakening with "IH Hinv"); auto; try solve_addr.
{ destruct Hp; by subst p. }
{ by rewrite PermFlowsToReflexive. } }
{ apply incrementPC_Some_inv in HincrPC as (p''&b''&e''&a''& ? & HPC & Z & Hregs').
assert (p'' = p ∧ b'' = b ∧ e'' = e) as (-> & -> & ->).
{ destruct (decide (PC = dst)); simplify_map_eq; auto. }
iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext.
iIntros "_".
iApply ("IH" $! regs' with "[%] [] [Hmap] [$Hown]").
{ cbn. intros. subst regs'. by repeat (apply lookup_insert_is_Some'; right). }
{ iIntros (ri v Hri Hvs).
subst regs'.
rewrite lookup_insert_ne in Hvs; auto.
destruct (decide (ri = dst)).
{ subst ri.
rewrite lookup_insert_ne in Hdst; auto.
rewrite lookup_insert in Hvs; inversion Hvs. simplify_eq.
unshelve iSpecialize ("Hreg" $! dst _ _ Hdst); eauto.
iApply (interp_weakening_ot with "Hreg"); auto; try solve_addr.
apply SealPermFlowsToReflexive. }
{ repeat (rewrite lookup_insert_ne in Hvs); auto.
iApply "Hreg"; auto. } }
{ subst regs'. rewrite insert_insert. iApply "Hmap". }
iModIntro.
iApply (interp_weakening with "IH Hinv"); auto; try solve_addr.
{ destruct Hp; by subst p. }
{ by rewrite PermFlowsToReflexive. } }
{ iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext; iIntros "_".
iApply wp_value; auto. iIntros; discriminate. }
Unshelve. Fail idtac. Admitted.
End fundamental.
From iris.proofmode Require Import proofmode.
From iris.program_logic Require Import weakestpre adequacy lifting.
From stdpp Require Import base.
From cap_machine.ftlr Require Import ftlr_base interp_weakening.
From cap_machine.rules Require Import rules_base rules_Lea.
Section fundamental.
Context {Σ:gFunctors} {memg:memG Σ} {regg:regG Σ} {sealsg: sealStoreG Σ}
{nainv: logrel_na_invs Σ}
`{MachineParameters}.
Notation D := ((leibnizO Word) -n> iPropO Σ).
Notation R := ((leibnizO Reg) -n> iPropO Σ).
Implicit Types w : (leibnizO Word).
Implicit Types interp : (D).
Lemma lea_case (r : leibnizO Reg) (p : Perm)
(b e a : Addr) (w : Word) (dst : RegName) (r0 : Z + RegName) (P:D):
ftlr_instr r p b e a w (Lea dst r0) P.
Proof.
intros Hp Hsome i Hbae Hi.
iIntros "#IH #Hinv #Hinva #Hreg #[Hread Hwrite] Hown Ha HP Hcls HPC Hmap".
rewrite delete_insert_delete.
iDestruct ((big_sepM_delete _ _ PC) with "[HPC Hmap]") as "Hmap /=";
[apply lookup_insert|rewrite delete_insert_delete;iFrame|]. simpl.
iApply (wp_lea with "[$Ha $Hmap]"); eauto.
{ by rewrite lookup_insert. }
{ rewrite /subseteq /map_subseteq /set_subseteq_instance. intros rr _.
apply elem_of_dom. apply lookup_insert_is_Some'; eauto. }
iIntros "!>" (regs' retv). iDestruct 1 as (HSpec) "[Ha Hmap]".
destruct HSpec as [ * Hdst ? Hz Hoffset HincrPC | * Hdst Hz Hoffset HincrPC | ].
{ apply incrementPC_Some_inv in HincrPC as (p''&b''&e''&a''& ? & HPC & Z & Hregs').
assert (p'' = p ∧ b'' = b ∧ e'' = e) as (-> & -> & ->).
{ destruct (decide (PC = dst)); simplify_map_eq; auto. }
iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext.
iIntros "_".
iApply ("IH" $! regs' with "[%] [] [Hmap] [$Hown]").
{ cbn. intros. subst regs'. by repeat (apply lookup_insert_is_Some'; right). }
{ iIntros (ri v Hri Hvs).
subst regs'.
rewrite lookup_insert_ne in Hvs; auto.
destruct (decide (ri = dst)).
{ subst ri.
rewrite lookup_insert_ne in Hdst; auto.
rewrite lookup_insert in Hvs; inversion Hvs. simplify_eq.
unshelve iSpecialize ("Hreg" $! dst _ _ Hdst); eauto.
iApply interp_weakening; eauto; try solve_addr.
destruct p0; simpl; auto. }
{ repeat (rewrite lookup_insert_ne in Hvs); auto.
iApply "Hreg"; auto. } }
{ subst regs'. rewrite insert_insert. iApply "Hmap". }
iModIntro.
iApply (interp_weakening with "IH Hinv"); auto; try solve_addr.
{ destruct Hp; by subst p. }
{ by rewrite PermFlowsToReflexive. } }
{ apply incrementPC_Some_inv in HincrPC as (p''&b''&e''&a''& ? & HPC & Z & Hregs').
assert (p'' = p ∧ b'' = b ∧ e'' = e) as (-> & -> & ->).
{ destruct (decide (PC = dst)); simplify_map_eq; auto. }
iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext.
iIntros "_".
iApply ("IH" $! regs' with "[%] [] [Hmap] [$Hown]").
{ cbn. intros. subst regs'. by repeat (apply lookup_insert_is_Some'; right). }
{ iIntros (ri v Hri Hvs).
subst regs'.
rewrite lookup_insert_ne in Hvs; auto.
destruct (decide (ri = dst)).
{ subst ri.
rewrite lookup_insert_ne in Hdst; auto.
rewrite lookup_insert in Hvs; inversion Hvs. simplify_eq.
unshelve iSpecialize ("Hreg" $! dst _ _ Hdst); eauto.
iApply (interp_weakening_ot with "Hreg"); auto; try solve_addr.
apply SealPermFlowsToReflexive. }
{ repeat (rewrite lookup_insert_ne in Hvs); auto.
iApply "Hreg"; auto. } }
{ subst regs'. rewrite insert_insert. iApply "Hmap". }
iModIntro.
iApply (interp_weakening with "IH Hinv"); auto; try solve_addr.
{ destruct Hp; by subst p. }
{ by rewrite PermFlowsToReflexive. } }
{ iApply wp_pure_step_later; auto.
iMod ("Hcls" with "[HP Ha]");[iExists w;iFrame|iModIntro].
iNext; iIntros "_".
iApply wp_value; auto. iIntros; discriminate. }
Unshelve. Fail idtac. Admitted.
End fundamental.