intensional.heap_lang.adequacy

From iris.proofmode Require Import tactics.
From iris.algebra Require Import auth.
From iris.base_logic.lib Require Import proph_map.
From iris.program_logic Require Import weakestpre adequacy hoare.
From intensional.heap_lang Require Import lang proofmode notation.
Set Default Proof Using "Type".

Class heapPreG Σ := HeapPreG {
  heap_preG_iris :> invPreG Σ;
  heap_preG_heap :> gen_heapPreG loc val Σ;
  heap_preG_proph :> proph_mapPreG proph_id (val * val) Σ;
  heap_preG_trace :> trace_preG Σ;
}.

Definition heapΣ : gFunctors := #[invΣ; gen_heapΣ loc val; proph_mapΣ proph_id (val * val); traceΣ].
Instance subG_heapPreG {Σ} : subG heapΣ Σ heapPreG Σ.
Proof. solve_inG. Qed.

Definition heap_adequacy Σ `{!heapPreG Σ} s e σ φ :
  ( `{!heapG Σ}, WP e @ s; {{ v, φ v }})
  adequate s e σ (λ v _, φ v).
Proof.
  intros Hwp; eapply (wp_adequacy _ _); iIntros (??) "".
  iMod (gen_heap_init σ.(heap)) as (?) "Hh".
  iMod (proph_map_init κs σ.(used_proph_id)) as (?) "Hp".
  iMod (trace_auth_init σ.(trace)) as (?) "(Ht & _ & _)".
  iModIntro. iExists
    (λ σ κs, (gen_heap_ctx σ.(heap) trace_auth σ.(trace) proph_map_ctx κs σ.(used_proph_id))%I),
    (λ _, True%I).
  iFrame. iApply (Hwp (HeapG _ _ _ _ _)).
Qed.

Definition heap_invariance Σ `{!heapPreG Σ} (N: namespace) (I: list val Prop) s e σ :
  I (trace σ)
  ( `{!heapG Σ}, trace_inv N I -∗ trace_is (trace σ) -∗ WP e @ s; {{ _, True }})
   σ' t,
    rtc erased_step ([e], σ) (t, σ')
    I (trace σ').
Proof.
  intros HI Hwp σ' t.
  eapply (wp_invariance Σ _ s _ _ _ _ (I (trace σ'))). iIntros (Hinv κs) "".
  iMod (gen_heap_init σ.(heap)) as (?) "Hh".
  iMod (proph_map_init κs σ.(used_proph_id)) as (?) "Hp".
  iMod (trace_auth_init σ.(trace)) as (?) "(Hta & Ht & Hth)".
  iDestruct (inv_alloc N _ ( t, trace_half_frag t I t) with "[Hth]") as ">#HI".
  { iNext. eauto. }
  iModIntro. iExists
    (λ σ κs _, (gen_heap_ctx σ.(heap) trace_auth σ.(trace) proph_map_ctx κs σ.(used_proph_id))%I),
    (λ _, True%I).
  iFrame. iSplitL.
  { iDestruct (Hwp (HeapG _ _ _ _ _)) as "Hwp". iApply ("Hwp" with "HI Ht"). }
  iIntros "(_ & Hta & _)". iExists _.
  iInv "HI" as ">Ht'" "_". iDestruct "Ht'" as (t') "(Ht' & %)".
  iDestruct (trace_auth_half_frag_agree with "Hta Ht'") as %->. iModIntro. eauto.
Qed.

Specialized adequacy theorem to establish trace properties as free theorems. This corresponds to Theorem 4.1 in the paper.
Minor remark 1: in the paper, the state of the operational semantics is represented as a pair of a heap and a trace. Here, we instead have σ,σ' be inhabitants of the state record type, and we use the trace projection to get the trace of a given state.
Minor remark 2: the following theorem is slightly more general than the one from the paper, as we only require the trace property to hold of the trace of the initial state σ, while the theorem in the paper is specialized to the case where the initial trace is the empty trace.
Lemma module_invariance {Σ} `{heapPreG Σ} (N: namespace)
  (Φ: `{heapG Σ}, iProp Σ val iProp Σ) (* Module specification *)
  (P0: iProp Σ) (* Initial resources required by the module *)
  (e: val expr) (* Context program, parameterized by the module *)
  (e_init: expr) (* Initialization code, used to allocate resources for P0 *)
  (imimpl: val) (* Implementation of the module (instrumented) *)
  (good_trace: list val Prop) (* Trace property *)
  (σ: state) (* Initial state *)
:
  (* The initial trace must satisfy the property *)
  good_trace (trace σ)
  (* The context must be safe, given a module satisfying the specification Φ *)
  ( `(heapG Σ) P m, Φ P m -∗ {{{ P }}} e m {{{ v, RET v; True }}})
  (* The initialization code must provide P0 *)
  ( `(heapG Σ), {{ True }} e_init {{ _, P0 }})
  (* The implementation provided for the module (iops) must satisfy the specification Φ.
     On top of P0 it is given SL resources for the trace. *)

  ( `(heapG Σ), Φ (P0 trace_is (trace σ) trace_inv N good_trace)%I imimpl)
  (* Then the trace remains good at every step *)
   σ' e',
    rtc erased_step ([(e_init;; e imimpl)%E], σ) (e', σ')
    good_trace (trace σ').
Proof.
  intros Htrσ Hctx Hinit Himpl σ' e' Hsteps.
  eapply heap_invariance. done. by apply Htrσ. 2: eapply Hsteps.
  iIntros (?) "HI Htr". wp_bind e_init.
  iApply wp_wand. by iApply Hinit.
  iIntros (v) "H0". wp_pures.
  iApply (Hctx with "[] [H0 Htr HI]").
  - iApply Himpl.
  - iFrame.
  - eauto.
Qed.