cap_machine.rules.rules_Lea
From iris.base_logic Require Export invariants gen_heap.
From iris.program_logic Require Export weakestpre ectx_lifting.
From iris.proofmode Require Import tactics.
From iris.algebra Require Import frac.
From cap_machine Require Export rules_base.
Section cap_lang_rules.
Context `{HM: memG Σ, HR: regG Σ}.
Context `{MachineParameters}.
Implicit Types P Q : iProp Σ.
Implicit Types σ : ExecConf.
Implicit Types c : cap_lang.expr.
Implicit Types a b : Addr.
Implicit Types r : RegName.
Implicit Types v : cap_lang.val.
Implicit Types w : Word.
Implicit Types reg : gmap RegName Word.
Implicit Types ms : gmap Addr Word.
Inductive Lea_failure (regs: Reg) (r1: RegName) (rv: Z + RegName) :=
| Lea_fail_rv_nonconst :
z_of_argument regs rv = None ->
Lea_failure regs r1 rv
| Lea_fail_p_E : forall p b e a,
regs !! r1 = Some (WCap p b e a) ->
p = E ->
Lea_failure regs r1 rv
| Lea_fail_r1_noncap : forall n,
regs !! r1 = Some (WInt n) ->
Lea_failure regs r1 rv
| Lea_fail_overflow : forall p b e a z,
regs !! r1 = Some (WCap p b e a) ->
z_of_argument regs rv = Some z ->
(a + z)%a = None ->
Lea_failure regs r1 rv
| Lea_fail_overflow_PC : forall p b e a z a',
regs !! r1 = Some (WCap p b e a) ->
z_of_argument regs rv = Some z ->
(a + z)%a = Some a' ->
incrementPC (<[ r1 := WCap p b e a' ]> regs) = None ->
Lea_failure regs r1 rv
.
Inductive Lea_spec
(regs: Reg) (r1: RegName) (rv: Z + RegName)
(regs': Reg) : cap_lang.val → Prop
:=
| Lea_spec_success : forall p b e a z a',
regs !! r1 = Some (WCap p b e a) ->
p ≠ E ->
z_of_argument regs rv = Some z ->
(a + z)%a = Some a' ->
incrementPC
(<[ r1 := WCap p b e a' ]> regs) = Some regs' ->
Lea_spec regs r1 rv regs' NextIV
| Lea_spec_failure :
Lea_failure regs r1 rv ->
Lea_spec regs r1 rv regs' FailedV.
Lemma wp_lea Ep pc_p pc_b pc_e pc_a r1 w arg (regs: Reg) :
decodeInstrW w = Lea r1 arg →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
regs !! PC = Some (WCap pc_p pc_b pc_e pc_a) →
regs_of (Lea r1 arg) ⊆ dom _ regs →
{{{ ▷ pc_a ↦ₐ w ∗
▷ [∗ map] k↦y ∈ regs, k ↦ᵣ y }}}
Instr Executable @ Ep
{{{ regs' retv, RET retv;
⌜ Lea_spec regs r1 arg regs' retv ⌝ ∗
pc_a ↦ₐ w ∗
[∗ map] k↦y ∈ regs', k ↦ᵣ y }}}.
Proof.
iIntros (Hinstr Hvpc HPC Dregs φ) "(>Hpc_a & >Hmap) Hφ".
iApply wp_lift_atomic_head_step_no_fork; auto.
iIntros (σ1 l1 l2 n) "Hσ1 /=". destruct σ1; simpl.
iDestruct "Hσ1" as "[Hr Hm]".
iDestruct (gen_heap_valid_inclSepM with "Hr Hmap") as %Hregs.
pose proof (lookup_weaken _ _ _ _ HPC Hregs).
iDestruct (@gen_heap_valid with "Hm Hpc_a") as %Hpc_a; auto.
iModIntro. iSplitR. by iPureIntro; apply normal_always_head_reducible.
iNext. iIntros (e2 σ2 efs Hpstep).
apply prim_step_exec_inv in Hpstep as (-> & -> & (c & -> & Hstep)).
iSplitR; auto. eapply step_exec_inv in Hstep; eauto.
unfold exec in Hstep; simpl in Hstep.
specialize (indom_regs_incl _ _ _ Dregs Hregs) as Hri. unfold regs_of in Hri.
feed destruct (Hri r1) as [r1v [Hr'1 Hr1]]. by set_solver+.
rewrite Hr1 in Hstep.
destruct (z_of_argument regs arg) as [ argz |] eqn:Harg;
pose proof Harg as Harg'; cycle 1.
{ (* Failure: argument is not a constant (z_of_argument regs arg = None) *)
unfold z_of_argument in Harg, Hstep. destruct arg as [| r0]; [ congruence |].
feed destruct (Hri r0) as [r0v [Hr'0 Hr0]].
{ unfold regs_of_argument. set_solver+. }
rewrite Hr0 Hr'0 in Harg Hstep.
destruct r0v; [ congruence |].
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; eauto).
iFailWP "Hφ" Lea_fail_rv_nonconst. }
apply (z_of_arg_mono _ r) in Harg. rewrite Harg in Hstep; cbn in Hstep.
destruct r1v as [| p b e a ] eqn:Hr1v.
{ (* Failure: r1 is not a capability *)
inversion Hstep.
iFailWP "Hφ" Lea_fail_r1_noncap. }
destruct (perm_eq_dec p E); [ subst p |].
{ (* Failure: r1.p is Enter *)
inversion Hstep.
iFailWP "Hφ" Lea_fail_p_E. }
destruct (a + argz)%a as [ a' |] eqn:Hoffset; cycle 1.
{ (* Failure: offset is too large *)
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; auto).
iFailWP "Hφ" Lea_fail_overflow. }
rewrite /update_reg /= in Hstep.
destruct (incrementPC (<[ r1 := WCap p b e a' ]> regs)) as [ regs' |] eqn:Hregs';
pose proof Hregs' as Hregs'2; cycle 1.
{ (* Failure: incrementing PC overflows *)
assert (incrementPC (<[ r1 := WCap p b e a' ]> r) = None) as HH.
{ eapply incrementPC_overflow_mono; first eapply Hregs'.
by rewrite lookup_insert_is_Some'; eauto.
by apply insert_mono; eauto. }
apply (incrementPC_fail_updatePC _ m) in HH. rewrite HH in Hstep.
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; auto).
iFailWP "Hφ" Lea_fail_overflow_PC. }
(* Success *)
eapply (incrementPC_success_updatePC _ m) in Hregs'
as (p' & g' & b' & e' & a'' & a_pc' & HPC'' & HuPC & ->).
eapply updatePC_success_incl in HuPC. 2: by eapply insert_mono; eauto.
rewrite HuPC in Hstep; clear HuPC.
eassert ((c, σ2) = (NextI, _)) as HH.
{ destruct p; cbn in Hstep; eauto. congruence. }
simplify_pair_eq.
iFrame.
iMod ((gen_heap_update_inSepM _ _ r1) with "Hr Hmap") as "[Hr Hmap]"; eauto.
iMod ((gen_heap_update_inSepM _ _ PC) with "Hr Hmap") as "[Hr Hmap]"; eauto.
iFrame. iModIntro. iApply "Hφ". iFrame. iPureIntro.
eapply Lea_spec_success; eauto.
Unshelve. all: auto.
Qed.
Lemma wp_lea_success_reg_PC Ep pc_p pc_b pc_e pc_a pc_a' w rv z a' :
decodeInstrW w = Lea PC (inr rv) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(a' + 1)%a = Some pc_a' →
(pc_a + z)%a = Some a' →
pc_p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ rv ↦ᵣ WInt z }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ rv ↦ᵣ WInt z }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep φ) "(>HPC & >Hpc_a & >Hrv) Hφ".
iDestruct (map_of_regs_2 with "HPC Hrv") as "[Hmap %]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
rewrite !insert_insert. (* TODO: add to simplify_map_eq via simpl_map? *)
iApply (regs_of_map_2 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_reg Ep pc_p pc_b pc_e pc_a pc_a' w r1 rv p b e a z a' :
decodeInstrW w = Lea r1 (inr rv) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(pc_a + 1)%a = Some pc_a' →
(a + z)%a = Some a' →
p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ r1 ↦ᵣ WCap p b e a
∗ ▷ rv ↦ᵣ WInt z }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ rv ↦ᵣ WInt z
∗ r1 ↦ᵣ WCap p b e a' }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1 & >Hrv) Hφ".
iDestruct (map_of_regs_3 with "HPC Hrv Hr1") as "[Hmap (%&%&%)]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [| * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
(* FIXME: tedious *)
rewrite (insert_commute _ PC r1) // insert_insert.
rewrite (insert_commute _ r1 PC) // (insert_commute _ r1 rv) // insert_insert.
iApply (regs_of_map_3 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_z_PC Ep pc_p pc_b pc_e pc_a pc_a' w z a' :
decodeInstrW w = Lea PC (inl z) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(a' + 1)%a = Some pc_a' →
(pc_a + z)%a = Some a' →
pc_p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a) Hφ".
iDestruct (map_of_regs_1 with "HPC") as "Hmap".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
rewrite !insert_insert. iApply (regs_of_map_1 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_z Ep pc_p pc_b pc_e pc_a pc_a' w r1 p b e a z a' :
decodeInstrW w = Lea r1 (inl z) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(pc_a + 1)%a = Some pc_a' →
(a + z)%a = Some a' →
p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ r1 ↦ᵣ WCap p b e a }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ r1 ↦ᵣ WCap p b e a' }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1) Hφ".
iDestruct (map_of_regs_2 with "HPC Hr1") as "[Hmap %]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
(* FIXME: tedious *)
rewrite insert_commute // insert_insert insert_commute // insert_insert.
iDestruct (regs_of_map_2 with "Hmap") as "[? ?]"; eauto. iFrame. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
End cap_lang_rules.
From iris.program_logic Require Export weakestpre ectx_lifting.
From iris.proofmode Require Import tactics.
From iris.algebra Require Import frac.
From cap_machine Require Export rules_base.
Section cap_lang_rules.
Context `{HM: memG Σ, HR: regG Σ}.
Context `{MachineParameters}.
Implicit Types P Q : iProp Σ.
Implicit Types σ : ExecConf.
Implicit Types c : cap_lang.expr.
Implicit Types a b : Addr.
Implicit Types r : RegName.
Implicit Types v : cap_lang.val.
Implicit Types w : Word.
Implicit Types reg : gmap RegName Word.
Implicit Types ms : gmap Addr Word.
Inductive Lea_failure (regs: Reg) (r1: RegName) (rv: Z + RegName) :=
| Lea_fail_rv_nonconst :
z_of_argument regs rv = None ->
Lea_failure regs r1 rv
| Lea_fail_p_E : forall p b e a,
regs !! r1 = Some (WCap p b e a) ->
p = E ->
Lea_failure regs r1 rv
| Lea_fail_r1_noncap : forall n,
regs !! r1 = Some (WInt n) ->
Lea_failure regs r1 rv
| Lea_fail_overflow : forall p b e a z,
regs !! r1 = Some (WCap p b e a) ->
z_of_argument regs rv = Some z ->
(a + z)%a = None ->
Lea_failure regs r1 rv
| Lea_fail_overflow_PC : forall p b e a z a',
regs !! r1 = Some (WCap p b e a) ->
z_of_argument regs rv = Some z ->
(a + z)%a = Some a' ->
incrementPC (<[ r1 := WCap p b e a' ]> regs) = None ->
Lea_failure regs r1 rv
.
Inductive Lea_spec
(regs: Reg) (r1: RegName) (rv: Z + RegName)
(regs': Reg) : cap_lang.val → Prop
:=
| Lea_spec_success : forall p b e a z a',
regs !! r1 = Some (WCap p b e a) ->
p ≠ E ->
z_of_argument regs rv = Some z ->
(a + z)%a = Some a' ->
incrementPC
(<[ r1 := WCap p b e a' ]> regs) = Some regs' ->
Lea_spec regs r1 rv regs' NextIV
| Lea_spec_failure :
Lea_failure regs r1 rv ->
Lea_spec regs r1 rv regs' FailedV.
Lemma wp_lea Ep pc_p pc_b pc_e pc_a r1 w arg (regs: Reg) :
decodeInstrW w = Lea r1 arg →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
regs !! PC = Some (WCap pc_p pc_b pc_e pc_a) →
regs_of (Lea r1 arg) ⊆ dom _ regs →
{{{ ▷ pc_a ↦ₐ w ∗
▷ [∗ map] k↦y ∈ regs, k ↦ᵣ y }}}
Instr Executable @ Ep
{{{ regs' retv, RET retv;
⌜ Lea_spec regs r1 arg regs' retv ⌝ ∗
pc_a ↦ₐ w ∗
[∗ map] k↦y ∈ regs', k ↦ᵣ y }}}.
Proof.
iIntros (Hinstr Hvpc HPC Dregs φ) "(>Hpc_a & >Hmap) Hφ".
iApply wp_lift_atomic_head_step_no_fork; auto.
iIntros (σ1 l1 l2 n) "Hσ1 /=". destruct σ1; simpl.
iDestruct "Hσ1" as "[Hr Hm]".
iDestruct (gen_heap_valid_inclSepM with "Hr Hmap") as %Hregs.
pose proof (lookup_weaken _ _ _ _ HPC Hregs).
iDestruct (@gen_heap_valid with "Hm Hpc_a") as %Hpc_a; auto.
iModIntro. iSplitR. by iPureIntro; apply normal_always_head_reducible.
iNext. iIntros (e2 σ2 efs Hpstep).
apply prim_step_exec_inv in Hpstep as (-> & -> & (c & -> & Hstep)).
iSplitR; auto. eapply step_exec_inv in Hstep; eauto.
unfold exec in Hstep; simpl in Hstep.
specialize (indom_regs_incl _ _ _ Dregs Hregs) as Hri. unfold regs_of in Hri.
feed destruct (Hri r1) as [r1v [Hr'1 Hr1]]. by set_solver+.
rewrite Hr1 in Hstep.
destruct (z_of_argument regs arg) as [ argz |] eqn:Harg;
pose proof Harg as Harg'; cycle 1.
{ (* Failure: argument is not a constant (z_of_argument regs arg = None) *)
unfold z_of_argument in Harg, Hstep. destruct arg as [| r0]; [ congruence |].
feed destruct (Hri r0) as [r0v [Hr'0 Hr0]].
{ unfold regs_of_argument. set_solver+. }
rewrite Hr0 Hr'0 in Harg Hstep.
destruct r0v; [ congruence |].
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; eauto).
iFailWP "Hφ" Lea_fail_rv_nonconst. }
apply (z_of_arg_mono _ r) in Harg. rewrite Harg in Hstep; cbn in Hstep.
destruct r1v as [| p b e a ] eqn:Hr1v.
{ (* Failure: r1 is not a capability *)
inversion Hstep.
iFailWP "Hφ" Lea_fail_r1_noncap. }
destruct (perm_eq_dec p E); [ subst p |].
{ (* Failure: r1.p is Enter *)
inversion Hstep.
iFailWP "Hφ" Lea_fail_p_E. }
destruct (a + argz)%a as [ a' |] eqn:Hoffset; cycle 1.
{ (* Failure: offset is too large *)
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; auto).
iFailWP "Hφ" Lea_fail_overflow. }
rewrite /update_reg /= in Hstep.
destruct (incrementPC (<[ r1 := WCap p b e a' ]> regs)) as [ regs' |] eqn:Hregs';
pose proof Hregs' as Hregs'2; cycle 1.
{ (* Failure: incrementing PC overflows *)
assert (incrementPC (<[ r1 := WCap p b e a' ]> r) = None) as HH.
{ eapply incrementPC_overflow_mono; first eapply Hregs'.
by rewrite lookup_insert_is_Some'; eauto.
by apply insert_mono; eauto. }
apply (incrementPC_fail_updatePC _ m) in HH. rewrite HH in Hstep.
assert (c = Failed ∧ σ2 = (r, m)) as (-> & ->)
by (destruct p; inversion Hstep; auto).
iFailWP "Hφ" Lea_fail_overflow_PC. }
(* Success *)
eapply (incrementPC_success_updatePC _ m) in Hregs'
as (p' & g' & b' & e' & a'' & a_pc' & HPC'' & HuPC & ->).
eapply updatePC_success_incl in HuPC. 2: by eapply insert_mono; eauto.
rewrite HuPC in Hstep; clear HuPC.
eassert ((c, σ2) = (NextI, _)) as HH.
{ destruct p; cbn in Hstep; eauto. congruence. }
simplify_pair_eq.
iFrame.
iMod ((gen_heap_update_inSepM _ _ r1) with "Hr Hmap") as "[Hr Hmap]"; eauto.
iMod ((gen_heap_update_inSepM _ _ PC) with "Hr Hmap") as "[Hr Hmap]"; eauto.
iFrame. iModIntro. iApply "Hφ". iFrame. iPureIntro.
eapply Lea_spec_success; eauto.
Unshelve. all: auto.
Qed.
Lemma wp_lea_success_reg_PC Ep pc_p pc_b pc_e pc_a pc_a' w rv z a' :
decodeInstrW w = Lea PC (inr rv) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(a' + 1)%a = Some pc_a' →
(pc_a + z)%a = Some a' →
pc_p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ rv ↦ᵣ WInt z }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ rv ↦ᵣ WInt z }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep φ) "(>HPC & >Hpc_a & >Hrv) Hφ".
iDestruct (map_of_regs_2 with "HPC Hrv") as "[Hmap %]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
rewrite !insert_insert. (* TODO: add to simplify_map_eq via simpl_map? *)
iApply (regs_of_map_2 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_reg Ep pc_p pc_b pc_e pc_a pc_a' w r1 rv p b e a z a' :
decodeInstrW w = Lea r1 (inr rv) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(pc_a + 1)%a = Some pc_a' →
(a + z)%a = Some a' →
p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ r1 ↦ᵣ WCap p b e a
∗ ▷ rv ↦ᵣ WInt z }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ rv ↦ᵣ WInt z
∗ r1 ↦ᵣ WCap p b e a' }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1 & >Hrv) Hφ".
iDestruct (map_of_regs_3 with "HPC Hrv Hr1") as "[Hmap (%&%&%)]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [| * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
(* FIXME: tedious *)
rewrite (insert_commute _ PC r1) // insert_insert.
rewrite (insert_commute _ r1 PC) // (insert_commute _ r1 rv) // insert_insert.
iApply (regs_of_map_3 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_z_PC Ep pc_p pc_b pc_e pc_a pc_a' w z a' :
decodeInstrW w = Lea PC (inl z) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(a' + 1)%a = Some pc_a' →
(pc_a + z)%a = Some a' →
pc_p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a) Hφ".
iDestruct (map_of_regs_1 with "HPC") as "Hmap".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
rewrite !insert_insert. iApply (regs_of_map_1 with "Hmap"); eauto. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
Lemma wp_lea_success_z Ep pc_p pc_b pc_e pc_a pc_a' w r1 p b e a z a' :
decodeInstrW w = Lea r1 (inl z) →
isCorrectPC (WCap pc_p pc_b pc_e pc_a) →
(pc_a + 1)%a = Some pc_a' →
(a + z)%a = Some a' →
p ≠ E →
{{{ ▷ PC ↦ᵣ WCap pc_p pc_b pc_e pc_a
∗ ▷ pc_a ↦ₐ w
∗ ▷ r1 ↦ᵣ WCap p b e a }}}
Instr Executable @ Ep
{{{ RET NextIV;
PC ↦ᵣ WCap pc_p pc_b pc_e pc_a'
∗ pc_a ↦ₐ w
∗ r1 ↦ᵣ WCap p b e a' }}}.
Proof.
iIntros (Hinstr Hvpc Hpca' Ha' Hnep ϕ) "(>HPC & >Hpc_a & >Hr1) Hφ".
iDestruct (map_of_regs_2 with "HPC Hr1") as "[Hmap %]".
iApply (wp_lea with "[$Hmap Hpc_a]"); eauto; simplify_map_eq; eauto.
by rewrite !dom_insert; set_solver+.
iNext. iIntros (regs' retv) "(#Hspec & Hpc_a & Hmap)".
iDestruct "Hspec" as %Hspec.
destruct Hspec as [ | * Hfail ].
{ (* Success *)
iApply "Hφ". iFrame. incrementPC_inv; simplify_map_eq.
(* FIXME: tedious *)
rewrite insert_commute // insert_insert insert_commute // insert_insert.
iDestruct (regs_of_map_2 with "Hmap") as "[? ?]"; eauto. iFrame. }
{ (* Failure (contradiction) *)
destruct Hfail; try incrementPC_inv; simplify_map_eq; eauto. congruence.
}
Qed.
End cap_lang_rules.