cap_machine.ftlr.ftlr_base

From iris.proofmode Require Import tactics.
From iris.program_logic Require Import weakestpre adequacy lifting.
From stdpp Require Import base.
From cap_machine Require Export logrel.

Section fundamental.
 Context {Σ:gFunctors} {memg:memG Σ} {regg:regG Σ}
          {nainv: logrel_na_invs Σ}
          `{MachineParameters}.

  Notation D := ((leibnizO Word) -n> iPropO Σ).
  Notation R := ((leibnizO Reg) -n> iPropO Σ).
  Implicit Types w : (leibnizO Word).
  Implicit Types interp : (D).

  Definition ftlr_instr (r : leibnizO Reg) (p : Perm)
        (b e a : Addr) (w : Word) (i: instr) (P : D) :=
      p = RX p = RWX
     ( x : RegName, is_Some (r !! x))
     isCorrectPC (WCap p b e a)
     (b <= a)%a (a < e)%a
     decodeInstrW w = i
    -> ( a0 a1 a2 a3 a4,
             full_map a0
          -∗ ( (r1 : RegName) v, r1 PC a0 !! r1 = Some v (fixpoint interp1) v)
          -∗ registers_mapsto (<[PC:=WCap a1 a2 a3 a4]> a0)
          -∗ na_own logrel_nais
             -∗ (fixpoint interp1) (WCap a1 a2 a3 a4) -∗ interp_conf)
    -∗ (fixpoint interp1) (WCap p b e a)
    -∗ inv (logN.@a) ( w0 : leibnizO Word, a ↦ₐ w0 P w0)
    -∗ ( (r1 : RegName) v, r1 PC r !! r1 = Some v (fixpoint interp1) v)
    -∗ ( w : Word, P w -∗ (fixpoint interp1) w)
             (if decide (writeAllowed_in_r_a (<[PC:=WCap p b e a]> r) a) then ( w : Word, (fixpoint interp1) w -∗ P w) else emp)
    -∗ na_own logrel_nais
    -∗ a ↦ₐ w
    -∗ P w
    -∗ ( ( w0 : leibnizO Word, a ↦ₐ w0 P w0) ={ logN.@a,}=∗ emp)
    -∗ PC ↦ᵣ WCap p b e a
    -∗ ([∗ map] ky delete PC (<[PC:=WCap p b e a]> r), k ↦ᵣ y)
    -∗
        WP Instr Executable
        @ logN.@a {{ v, |={ logN.@a,}=> WP Seq (of_val v)
                                                    {{ v0, v0 = HaltedV
                                                            r1 : Reg, full_map r1 registers_mapsto r1
                                                                                                         na_own logrel_nais }} }}.

End fundamental.