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1 CONSTRUCTION OF THE PRESENTED GHOST THEORIES
So far we have seen the essential building blocks of the well-bracketed program logic in terms of

predicates which are defined using so-called ghost resources. In this section we will discuss what

ghost resources are in general in Iris and outline how they can be used to define these predicates.

Readers who are not interested in all the details of the construction of the presented predicates

in terms of ghost resources of Iris could simply ignore this section as understanding it is not

instrumental for understanding the main contributions of the paper which are presented in other

sections. All the constructions we present in Section 1.1 are standard in Iris [Jung et al. 2018]; in

Section 1.2 we show how to use the existing constructions to define the new stack resources.

In Iris ghost resources are modeled using an algebraic structure called resource algebras which

are essentially partial commutative semi-groups where the operation represents composition of

resources. Formally, the resource algebras are step-indexed in Iris, but here we omit discussion of

step-indexing for the sake of brevity and clarity. We also simplify the description of persistence.

We remark that our simplifications are immaterial for what we discuss in this paper.

Being a partial commutative semi-group, a resource algebra consists of a carrier set𝑀 together

with a partial binary operation · : 𝑀 ×𝑀 → 𝑀 that is associative and commutative. The partiality

here is captured by working with a valid subset of the elements of the resource algebra. We write

✓𝑀 (𝑚) to say that𝑚 is valid; we drop the subscript𝑀 whenever it is clear what is meant. The only

requirement of the valid set is that it respects resource compositions in the sense that constituents

of valid resources must also be valid:

✓(𝑚 ·𝑚′) =⇒ ✓(𝑚) ∧ ✓(𝑚′)

The way resource algebras are used in Iris reasoning is using the following predicate called

ownership: 𝑚 : 𝑀
𝛾
; we drop : 𝑀 part whenever it is clear what resource algebra 𝑀 is from the

context. The basic rules for working with resources are as follows:

own-alloc

✓𝑀 (𝑚) ∗ infinite(𝐴) ⊢ |⇛∃𝛾 ∈ 𝐴. 𝑚 : 𝑀
𝛾

own-op

𝑚 ·𝑚′
: 𝑀

𝛾 ⊣⊢ 𝑚 : 𝑀
𝛾 ∗ 𝑚′

: 𝑀
𝛾

own-update

𝑚⇝𝑀 𝑚′ ∗ 𝑚 : 𝑀
𝛾 ⊢ 𝑚′

: 𝑀
𝛾

own-valid

𝑚 : 𝑀
𝛾 ⊢ ✓𝑀 (𝑚)

own-persistence

𝑚 ·𝑚 =𝑚 ⊢ persistent(𝑚 : 𝑀
𝛾 )

Note how, as formalized by the rule own-op and own-valid, the partiality of the operation of the

resource algebra is reflecting a notion of separation in the resource algebra. That is, for two elements

𝑚 and𝑚′
, 𝑚 : 𝑀

𝛾
and 𝑚′

: 𝑀
𝛾
are suitably disjoint, i.e., 𝑚 : 𝑀

𝛾 ∗ 𝑚′
: 𝑀

𝛾 ⊢ False if and only if

✓\𝑀 (𝑚 ·𝑚′). The rule own-op also tells us how duplicable resources, i.e., elements for which we
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have𝑚 =𝑚 ·𝑚, are precisely those resources whose ownership is persistent: persistent(𝑚 𝛾 ).1 The
rule own-alloc allows us to allocate new ghost resources. In fact, as also evidenced by own-op and

own-valid, Iris maintains the global invariant that the product of all resources owned at all times is

always valid. The name of the freshly allocated resource is drawn from an infinite set 𝐴 of ghost

names. The allocated resource must crucially be a valid element. The rule own-persistence allows

us to derive persistence of propositions defined in terms of resources; ownership is persistent if

the resource𝑚 is duplicable, i.e., if𝑚 ·𝑚 =𝑚. According to the rule own-update, a resource𝑚 can

be updated to a resource𝑚′
if𝑚 can be frame preservingly updated to𝑚′

, written𝑚⇝𝑀 𝑚′
. The

frame preserving update relation is defined as follows:

𝑚⇝𝑀 𝑚′ ≜ (✓𝑀 (𝑚) =⇒ ✓𝑀 (𝑚′)) ∧ ∀𝑓 . ✓𝑀 (𝑓 ·𝑚) =⇒ ✓𝑀 (𝑓 ·𝑚′)
(frame-preserving-update)

This definition is essentially saying that we should show that what we update to is valid element

under the assumption that the element we are updating from is valid, and furthermore that whenever

an element 𝑓 is a valid frame for𝑚, i.e., the element 𝑓 could potentially be the resources owned

separately in the system, then 𝑓 must also be a valid frame for 𝑚′
. This means that the frame

preserving update being the requirement for updating resources in the system does indeed preserve

the global invariant of validity maintained at all times that we discussed earlier. Note that if the

resource algebra has an identity element, i.e., an element 𝑒 for which we have 𝑒 ·𝑚 =𝑚 for all𝑚,

then the left conjunct in frame-preserving-update is subsumed by the right conjunct.

The Extension Order. A resource algebra𝑀 induce a so-called extension order, ⪯𝑀 , among their

its elements which we will use below in resource algebra constructions.

𝑚 ⪯𝑀 𝑚′ ≜ 𝑚 =𝑚′ ∨ ∃𝑚′′ . 𝑚′ =𝑚′′ ·𝑚

Whenever𝑚 ⪯𝑀 𝑚′
holds ✓𝑀 (𝑚′) implies ✓𝑀 (𝑚).

1.1 General Resource Algebra Constructions
The Agreement Resource Algebra. Given a set 𝐴, we construct the agreement resource algebra

over 𝐴, Ag(𝐴), as the resource algebra with the following carrier set:

Ag(𝐴) ≜ {ag(𝑎) |𝑎 ∈ 𝐴} ∪ {⊥Ag}

Here all elements are valid except for ⊥Ag, ✓\ (⊥Ag). The operation of the agreement resource

algebra is defined as follows:

𝑚 ·𝑚′ ≜

{
𝑚 if𝑚 = ag(𝑎) and𝑚′ = ag(𝑎′) and 𝑎 = 𝑎′

⊥Ag otherwise

This resource algebra has no non-trivial frame preserving update.

The Exclusive Resource Algebra. The exclusive resource algebra, Ex(𝐴) where 𝐴 is a set. The

carrier set of this resource algebra is as follows:

Ex(𝐴) ≜ {ex(𝑎) |𝑎 ∈ 𝐴} ∪ {⊥Ex}

and we have

✓(𝑚) ⇐⇒ 𝑚 ≠ ⊥Ex

1
Our notion of persistence is slightly simplified compared to the official definition in Iris (where all persistent resources are

duplicable, but not the other way round); but this simplification is immaterial for what we discuss in this paper.
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The operation of the exclusive resource algebra is essentially never defined which means there can

never be two separate elements of the resource in the system, hence the name exclusive.

𝑚 ·𝑚′ ≜ ⊥Ex

Therefore, we have any valid exclusive element ca be updated to any other valid element:

ex(𝑎) ⇝ ex(𝑏)

In the exclusive resource algebra the extension order is simply the reflexivity relation as the

operation always results in ⊥Ex.

The Finite Set Resource Algebra. Given a set 𝐴, the resource algebra of finite sets, FinSet(𝐴), has
as carrier the set of all finite subsets of 𝐴. All elements are valid and the operation of this resource

is the simply the union of the two sets. Since all elements of this resource algebra are valid any

element can be frame preservingly updated to any other element. In the FinSet resource algebra

the extension order coincides with the subset relation: 𝐶 ⪯FinSet(𝐴) 𝐷 if and only if 𝐶 ⊆ 𝐷 . This

resource algebra is not very interesting on its own but will prove useful in combination with other

resource algebra constructions.

The Sum Resource Algebra. Given two resource algebras𝑀1 and𝑀2, their sum, Sum(𝑀1, 𝑀2). The
carrier set of this resource algebra is as follows:

Sum(𝑀1, 𝑀2) ≜ {injl(𝑚1) |𝑚1 ∈ 𝑀1} ∪ {injr(𝑚2) |𝑚2 ∈ 𝑀2} ∪ {⊥Sum}

The validity is defined as the validity of the underlying resource algebras:

✓(injl(𝑚1)) ⇐⇒ ✓(𝑚1)
✓(injr(𝑚1)) ⇐⇒ ✓(𝑚2)

with ⊥Sum being invalid, ✓\ (⊥Sum). The operation of the sum resource algebra is defined as follows:

𝑚 ·𝑚′ ≜


injl(𝑚1 ·𝑚′

1
) if𝑚 = injl(𝑚1) and𝑚′ = injl(𝑚′

1
)

injr(𝑚2 ·𝑚′
2
) if𝑚 = injr(𝑚2) and𝑚′ = injr(𝑚′

2
)

⊥Sum otherwise

The frame preserving updates of the sum resource algebra depends on the resource algebras it is

instantiated with; we will discuss these when we use this resource algebra later on.

The Authoritative Resource Algebra. The authoritative resource algebra is one of the most impor-

tant and versatile resource algebras among all resource algebras. Given the resource algebra𝑀 we

define the authoritative resource algebra Auth(𝑀). The carrier set of Auth(𝑀) is as follows:

Auth(𝑀) ≜ {•𝑚 |𝑚 ∈ 𝑀} ∪ {◦𝑚 |𝑚 ∈ 𝑀} ∪ {•◦(𝑚,𝑚′) |𝑚,𝑚′ ∈ 𝑀} ∪ {⊥Auth}

The idea is the so-called full element • is the central authority in the sense that all fragmental
elements, ◦ , are included in it — see the definition validity below. Elements of the form •◦ are

simply there to represent resources elements that include both the central authority together with

some fragment of it — see the definition of validity and the operation of resource algebra below.
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The operation of the authoritative resource algebra is defined as follows:

𝑚1 ·𝑚2 ≜



◦ (𝑚′
1
·𝑚′

2
) if𝑚1 = ◦𝑚′

1
and𝑚2 = ◦𝑚′

2

•◦(𝑚′
1
,𝑚′

2
) if𝑚1 = •𝑚′

1
and𝑚2 = ◦𝑚′

2

•◦(𝑚′
2
,𝑚′

1
) if𝑚1 = ◦𝑚′

1
and𝑚2 = •𝑚′

2

•◦(𝑚′
11
,𝑚′

12
·𝑚′

2
) if𝑚1 = •◦(𝑚′

11
,𝑚′

12
) and𝑚2 = ◦𝑚′

2

•◦(𝑚′
21
,𝑚′

1
·𝑚′

22
) if𝑚1 = ◦𝑚′

1
and𝑚2 = •◦(𝑚′

21
,𝑚′

22
)

⊥Auth otherwise

The validity of elements of the authoritative resource algebra are as follows:

✓Auth(𝑀 ) (•𝑚′) ⇐⇒ ✓(𝑚′)
✓Auth(𝑀 ) (◦𝑚′) ⇐⇒ ✓(𝑚′)

✓Auth(𝑀 ) (•◦(𝑚1,𝑚2)) ⇐⇒ ✓(𝑚1) ∧𝑚2 ⪯𝑀 𝑚1

✓Auth(𝑀 ) (⊥Auth) ⇐⇒ False

Note how the operation and the validity relation enforce that there is at most one full part, • , for each
instance of the authoritative resource algebra. The frame preserving updates of the authoritative

resource algebra depends on the resource algebra it is instantiated with; we will discuss these when

we use this resource algebra later on.

The One-Shot Resource Algebra. We define the one-shot resource using the resource algebra

Sum(Ex({∗}),Ag({∗}))where {∗} is an arbitrary but fixed singleton set. The propositions pending(𝛾)
and shot(𝛾) are defined as follows:

pending(𝛾) ≜ injl(ex(∗)) 𝛾

shot(𝛾) ≜ injr(ag(∗)) 𝛾

With this definition we can immediately see that the rule pending-not-shot holds as injl(ex(∗)) ·
injr(ag(∗)) = ⊥Sum by the definition of the operation of the sum resource algebra. On the other

hand, injl(ex(∗)) has no valid frame: the frame can neither be of the form injr nor of the form
injl(𝑥) for any 𝑥 as ex(∗) is exclusive. Hence, to show the frame preserving update of shoot we

only need to show ✓(injr(ag(∗))) which trivially holds by definition. The rule own-persistence

allows us to prove shot-persistent as we have injr(ag(∗)) · injr(ag(∗)) = injr(ag(∗)). To show

make-one-shot we only need to show that ✓(injl(ex(∗))) which does hold by definition.

The Monotone Resource Algebra. The monotone resource algebra [Timany and Birkedal 2021] is

designed for reasoning about monotonicity in separation logic with respect to arbitrary preorder

(reflexive and transitive) relations. We will not detail the construction of this resource algebra

here. The interested reader is referred to Timany and Birkedal [2021] for the full details. What

is relevant here is the following: given a preorder relation (𝐴, 𝑅), the monotone resource algebra

for 𝑅, Monotone(𝑅), can embed the elements of the preorder using the function principal𝑅 : 𝐴 →
Monotone(𝑅) such that:

principal𝑅 (𝑎) ⪯Monotone (𝑅) principal𝑅 (𝑏) ⇐⇒ 𝑅(𝑎, 𝑏)
This means that in combination with the authoritative resource algebras we obtain:

• principal𝑅 (𝑏)
𝛾 ∗ ◦ principal𝑅 (𝑎)

𝛾 ⊢ 𝑅(𝑎, 𝑏)
and the following frame preserving update whenever 𝑅(𝑎, 𝑏):

• principal𝑅 (𝑎) ⇝ • principal𝑅 (𝑏) · ◦ principal𝑅 (𝑏)
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1.2 The Definition of the Building Blocks of the Well-Bracketed Program Logic
Each stack resource is constructed as an instance of the resource algebra Auth(Ex(stacks)). The
predicates stackIN• and stackIN◦ are defined as follows (we will write 𝑁 for the (ghost) name of the

stack instead of 𝛾 just to keep a familiar notation; stack names are simply ghost names):

stackIN• (𝑁, 𝑠) ≜ • ex(𝑠) 𝑁

stackIN◦ (𝑁, 𝑠) ≜ ◦ ex(𝑠) 𝑁

Since the extension order of the exclusive resource algebra is the reflexivity relation, by using the

rules own-op and own-valid, we can derive that

• ex(𝑠) 𝑁 ∗ ◦ ex(𝑠′) 𝑁 ⊢ 𝑠 = 𝑠′

which is precisely the rule stacks
IN
-agree. To prove the rule stacks

IN
-update, we need to show the

following frame preserving update:

•◦(ex(𝑠), ex(𝑠′)) ⇝ •◦(ex(𝑠′′), ex(𝑠′′))
However, we can immediately see that the left hand side of the update above cannot possibly

have any valid frames. The frame cannot be a full part. On the other hand, by the definition of the

operation of the authoritative and exclusive resource algebras, the frame composed with the left

and side would be •◦(ex(𝑠),⊥Ex) which is not valid as ⊥Ex ̸⪯ ex(𝑠). Hence, we have to show that

✓(•◦(ex(𝑠′′), ex(𝑠′′))) which is equivalent to showing that ✓(ex(𝑠′′)) and that ex(𝑠′′) ⪯ ex(𝑠′′)
which are both trivial.

What remains of the basic building blocks is the propositions EntireDom and SubsetOfDom. We

define these propositions using the resource algebra Auth(FinSet(stacknames)). In the follow-

ing, we will assume we have a globally fixed ghost name 𝛾dom. The propositions EntireDom and

SubsetOfDom are defined as follows:

EntireDom(𝐴) ≜ •𝐴 𝛾dom

SubsetOfDom(𝐴) ≜ ◦𝐴 𝛾dom

These definitions immediately satisfy the rules dom-subset and dom-distributes. The former holds

as the left hand side of the rule basically amounts to ✓(•◦(𝐵,𝐴)) which by definition implies

𝐴 ⪯FinSet(stacknames) 𝐵, or equivalently, 𝐴 ⊆ 𝐵. The latter, on the other hand, holds by the definition

of the operation of the authoritative resource algebra for two fragments and a simple application

of the rule own-op — recall that the operation of the finite sets resource algebra is set union. To

prove the rule dom-grow we only need to show the following frame preserving update:

•◦(𝐵, ∅) ⇝ •◦(𝐵 ∪𝐴,𝐴)
In this case, we can see that the frame cannot be of the form •𝐶 or •◦(𝐶, 𝐷) for any sets 𝐶 and

𝐷 . However, it could be of the form ◦𝐶 for a 𝐶 such that ✓(•◦(𝐵, ∅ ∪𝐶)) which is equivalent to

saying that in this case we must have 𝐶 ⊆ 𝐵. To conclude the proof we only need to show that

✓(•◦(𝐵 ∪𝐴,𝐴 ∪𝐶)). This is indeed the case as 𝐴 ∪𝐶 ⊆ 𝐵 ∪𝐴 and we have that ✓(𝐵 ∪𝐴) holds
trivially as all finite sets are valid in the resource algebra of finite sets and 𝐴 is required to be finite.

2 ENCODING STATE TRANSITION SYSTEMS USING GHOST STACKS
We define a state transition system with public and private transition relations (STS for short) to

be a tuple (𝑆, pub, pri) where pub is the public transition relation and pri is the private transition
relation. We stipulate that both transition relations are reflexive and transitive and that the public

relation is included in the private relation.
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Below, we will construct a theory allowing us to embed state transition systems into our logic

based on ghost stacks. The idea is that when the user asks to embed a new STS, we create a ghost

stack and an invariant over managing the stack. We use the name of the freshly allocated stack as

the name for the STS instance.

We first define configurations which consist of a stack (of ghost names) together with a STS state.

We write configurations for the set of configurations. The idea is that our logical predicates for
embedding the STS into our logic are defined as relations over configurations. We write StateOf (𝑐)
for the state of the configuration 𝑐 and StackOf (𝑐) for its stack. We define the following predicates

to embed the STS into our logic:

PubRel(𝑐, 𝑐′) ≜ StackOf (𝑐) = StackOf (𝑐′) ∧ pub(StateOf (𝑐), StateOf (𝑐′))
PriRel(𝑐, 𝑐′) ≜ ∃𝛾,𝛾 ′, 𝑠 . StackOf (𝑐′) = 𝛾 ′ :: StackOf (𝑐) ∗ StackOf (𝑐) = 𝛾 :: 𝑠∗

• principalpub (StateOf (𝑐))
𝛾 ∗ pri(StateOf (𝑐), StateOf (𝑐′))

OwnConf • (𝑁, 𝑐) ≜ ∃𝛾, 𝑠 . StackOf (𝑐) = 𝛾 :: 𝑠 ∧ stack◦ (𝑁, StackOf (𝑐)) ∗ • principalpub (StateOf (𝑐))
𝛾

OwnConf ◦ (𝑁, 𝑐) ≜ ∃𝛾, 𝑠 . StackOf (𝑐) = 𝛾 :: 𝑠 ∧ stack• (𝑁, StackOf (𝑐)) ∗ ◦ principalpub (StateOf (𝑐))
𝛾

The idea is that we use the monotone resource algebra over the public relation (together with the

authoritative resource algebra) to construct a resource algebra that can only be updated according

to the public relation. Notice how the PubRel captures our intuitive idea of a public transition:

the stack has not changed and the states are related publicly. The PriRel predicate on the other

hand requires the stack to have grown (we have pushed the new name on top of the stack) but

crucially, we own the full part of the resource algebra tracking the state of the STS before the

private transition. It is necessary to won the full part of the old instance so we can revert the private

transition by popping the stack.

to enable reasoning about well-bracketedness, we use the following invariant STSInv(𝑁,𝛷),
parameterized by the stack name and a predicate𝛷 over the states of the STS. This is the invariant

that is established when we allocate the stack corresponding to the STS.

STSInv(𝑁,𝛷) ≜ ∃𝑐. OwnConf • (𝑁, 𝑐) ∗𝛷 (StateOf (𝑐)) NSTS .𝑁

The core rules for using the encoding of STSs are as follows:

wbHoare-create-STS

𝛷 (𝑎) ∗ stack• (𝑁, []) ∗ stack◦ (𝑁, []) ⊢ |⇛STSInv(𝑁,𝛷) ∗ ∃𝑠 . stack• (𝑁, 𝑠)

wbHoare-access-STS

𝑁 ∉ O
(
∀𝑐. L𝑃 ∗ OwnConf ◦ (𝑁, 𝑐)M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ ∃𝑐′ . OwnConf ◦ (𝑁, 𝑐′) ∗ PubRel(𝑐, 𝑐′)MO∪{𝑁 } )

LSTSInv(𝑁,𝛷) ∗ 𝑃M 𝑒 L𝛷MO

wbHoare-mend-STS

L𝑃M 𝑒 L𝛷MO\{𝑁 } ⊢ LOwnConf ◦ (𝑁, 𝑐) ∗ 𝑃M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ OwnConf ◦ (𝑁, 𝑐)MO

Note how the rule wbHoare-create-STS precisely matches what is required in the rule wbHoare-

create-stack. That is, wbHoare-create-STS can be used in conjunction with wbHoare-create-stack

to create a stack and immediately establish STSInv. The rules wbHoare-access-STS and wbHoare-

mend-STS directly correspond to wbHoare-access-stack and wbHoare-mend-stack.

The predicates for embedding STSs satisfy the following rules:
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pub-related-transitive

PubRel(𝑐, 𝑐′) ∗ PubRel(𝑐′, 𝑐′′) ⊢ PubRel(𝑐, 𝑐′′)
pub-pri-related-transitive

PriRel(𝑐, 𝑐′) ∗ PubRel(𝑐′, 𝑐′′) ⊢ PriRel(𝑐, 𝑐′′)

pub-related-sound

PubRel(𝑐, 𝑐′) ⊢ pub(StateOf (𝑐), StateOf (𝑐′))

make-pub-transition

pub(StateOf (𝑐), 𝑎′)
OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐) ⊢ |⇛∃𝑐′ . OwnConf • (𝑁, 𝑐′) ∗

OwnConf ◦ (𝑁, 𝑐′) ∗ PubRel(𝑐, 𝑐′) ∗ StateOf (𝑐′) = 𝑎′

make-pri-transition

pri(StateOf (𝑐), 𝑎′)
OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐) ⊢ |⇛∃𝑐′ . OwnConf • (𝑁, 𝑐′) ∗

OwnConf ◦ (𝑁, 𝑐′) ∗ PriRel(𝑐, 𝑐′) ∗ StateOf (𝑐′) = 𝑎′

undo-pri-transition

PriRel(𝑐, 𝑐′) ∗ OwnConf • (𝑁, 𝑐′) ∗ OwnConf ◦ (𝑁, 𝑐′) ⊢ |⇛OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐)

confis-update-frag

OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐′) ⊢ |⇛OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐)

confis-pub-related

OwnConf • (𝑁, 𝑐) ∗ OwnConf ◦ (𝑁, 𝑐′) ⊢ PubRel(𝑐′, 𝑐)
We use the theory presented in this section to prove correctness of VAE. We use the STS that we

pick for this purpose is the following:

𝑟 = 0 𝑟 = 1 (VAE-sts)

The predicate𝛷 that we pick for the invariant STSInv is the following:

𝛷 (𝑎) ≜ ℓ ↦→ 𝑎

where ℓ is the location allocated by VAE. See our Coq development for the details of the proof.

3 SOME RULES AND DEFINITIONS FOR REFERENCE
All of the rules and definitions below are taken verbatim from the main paper.

3.1 Rules connecting well-bracketed Hoare triples and ghost stacks
wbHoare-create-stack

∀𝑁 . stack• (𝑁, []) ∗ stack◦ (𝑁, []) ≡∗ 𝑅(𝑁 ) ∗ ∃𝑠 . stack• (𝑁, 𝑠) ∀𝑁 . L𝑃 ∗ 𝑅(𝑁 )M 𝑒 L𝛷MO

L𝑃M 𝑒 L𝛷MO

wbHoare-access-stack

𝑁 ∉ O(
∀𝑠 . L𝑃 ∗ stack• (𝑁, 𝑠)M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ stack• (𝑁, 𝑠)MO∪{𝑁 }

)
⊢ Lstack∃ (𝑁 ) ∗ 𝑃M 𝑒 L𝛷MO

wbHoare-mend-stack

L𝑃M 𝑒 L𝛷MO\{𝑁 } ⊢ Lstack• (𝑁, 𝑠) ∗ 𝑃M 𝑒 L𝑥 . 𝛷 (𝑥) ∗ stack• (𝑁, 𝑠)MO
Hoare-wbHoare

{𝑃 } 𝑒 {𝛷} ⊢ L𝑃M 𝑒 L𝛷MO
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3.2 Rules of the One-Shot Ghost Theory

make-one-shot

⊢ |⇛∃𝛾 . pending(𝛾)
shoot

pending(𝛾) ⊢ |⇛shot(𝛾)
pending-not-shot

pending(𝛾) ∗ shot(𝛾) ⊢ False

shot-persistent

⊢ persistent(shot(𝛾))

3.3 Rules Governing Stacks

stacks-agree

stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠′) ⊢ 𝑠 = 𝑠′
stack-full-uniqe

stack• (𝑁, 𝑠) ∗ stack• (𝑁, 𝑠′) ⊢ False

stack-fragment-uniqe

stack◦ (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠′) ⊢ False
stack-exists

stack◦ (𝑁, 𝑠) ⊢ stack∃ (𝑁 )

stacks-push

stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠) ⊢ |⇛stack• (𝑁,𝛾 :: 𝑠) ∗ stack◦ (𝑁,𝛾 :: 𝑠)

stacks-pop

stack• (𝑁,𝛾 :: 𝑠) ∗ stack◦ (𝑁,𝛾 :: 𝑠) ⊢ |⇛stack• (𝑁, 𝑠) ∗ stack◦ (𝑁, 𝑠)

3.4 Rules Governing AllStacksExcept

mask-subset-dom

AllStacksExcept(S,O) ⊢ O ⊆ dom(S)
stack-exists-in

stack∃ (𝑁 ) ∗ AllStacksExcept(S,O) ⊢ 𝑁 ∈ dom(S)

stack-frag-not-out

𝑁 ∉ O
stack◦ (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ S(𝑁 ) = 𝑠

stack-full-is-out

stack• (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ 𝑁 ∈ O

stack-take-out

𝑁 ∈ dom(S) \ O
AllStacksExcept(S,O) ⊢ ∃𝑠 . AllStacksExcept(S,O ∪ {𝑁 }) ∗ stack• (𝑁, 𝑠)

stack-put-back

S(𝑁 ) = 𝑠

stack• (𝑁, 𝑠) ∗ AllStacksExcept(S,O) ⊢ AllStacksExcept(S,O \ {𝑁 })

change-out-stack

𝑁 ∈ O
AllStacksExcept(S,O) ⊢ AllStacksExcept(S[𝑁 ↦→ 𝑠′],O)

create-stack

AllStacksExcept(S,O) ⊢ |⇛∃𝑁 . 𝑁 ∉ dom(S) ∗ AllStacksExcept(S[𝑁 ↦→ [𝛾]],O) ∗ stack◦ (𝑁, [𝛾])
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3.5 The Definition the Predicates of the Theory of Stack Collections

stack• (𝑁, 𝑠) ≜ stackIN• (𝑁, 𝑠) ∗ SubsetOfDom({𝑁 })
stack◦ (𝑁, 𝑠) ≜ stackIN◦ (𝑁, 𝑠) ∗ SubsetOfDom({𝑁 })
stack∃ (𝑁 ) ≜ SubsetOfDom({𝑁 })

AllStacksExcept(S,O) ≜ O ⊆ dom(S) ∗ EntireDom(dom(S)) ∗ ∗
𝑁 ∈dom(S)\O

stack• (𝑁,S(𝑁 ))

3.6 Rules Governing the Predicates of the Theory of Stack Collections

SubsetOfDom(𝐴) ∗ EntireDom(𝐵) ⊢ 𝐴 ⊆ 𝐵 (dom-subset)

SubsetOfDom(𝐴) ∗ SubsetOfDom(𝐵) ⊣⊢ SubsetOfDom(𝐴 ∪ 𝐵) (dom-distributes)

EntireDom(𝐵) ∗ finite(𝐴) ⊢ |⇛EntireDom(𝐴 ∪ 𝐵) ∗ SubsetOfDom(𝐴) (dom-grow)

stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢𝑠 = 𝑠′ (stacks
IN
-agree)

stackIN• (𝑁, 𝑠) ∗ stackIN• (𝑁, 𝑠′) ⊢False (stacks• IN-unique)

stackIN◦ (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢False (stacks◦ IN-unique)

stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠′) ⊢|⇛stackIN• (𝑁, 𝑠′′) ∗ stackIN◦ (𝑁, 𝑠′′) (stacks
IN
-update)

infinite(𝐴) ⊢|⇛∃𝑁 ∈ 𝐴. stackIN• (𝑁, 𝑠) ∗ stackIN◦ (𝑁, 𝑠) (stacks
IN
-create)
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